KSMTE ICMTE 2022 Poster Template

Poster size : A0 (841mm × 1189mm)

Title: (Font size Bold 65)

Author's Name: A-A Lee^{1#}, B-B Lee², C-C Lee² (Font size 36)

- ¹ Department of Mechanical Engineering, oooo University, Seoul, Korea
 - ² Korea Institute of Machinery and Materials, Daejeon, Korea

Corresponding Author / E-mail: oooo@icmte.kr

Introduction (Font size 36)

- Workspace of planar 3-DOF parallel manipulator
- Parallel manipulator : High Precision, High Stiffness Light weight, Stable operation
- Maximizing the workspace of a planar 3-DOF parallel manipulator on 100 x 100 mm² size
- · Kinematics, Design Optimization, Control and Experiments

Position Kinematics

Limited Workspace

 $C_i = {}^{B}P_H + {}^{B}R^HC_i = {}^{B}A_i + \rho_i e^{i\theta_i} + b_i e^{i\phi_i}, i = 1,2,3$ $\rho_i = M_i \pm N_i$

 $M_i = ({}^{B}x_{Ci} + {}^{B}x_{Ai})\cos\phi_i + ({}^{B}y_{Ci} - {}^{B}y_{Ai})\sin\phi_i$

 $S_i = ({}^B x_{Ci} - {}^B x_{Ai}) \sin \phi_i - ({}^B y_{Ci} - {}^B y_{Ai}) \cos \phi_i$

Inverse Kinematics P+P2-P2 Pulse Generator DS2002/DS2003 A/D DS2102 D/A X,Y,8 Sensor Kinematics Block Diagram for the Closed-loop Control

Experiment results

- Resolutions of X and Y axis translation are 2,3 µm
- Resolution of Z axis rotation is 0.2mrad (0.0115°)

Design Optimization

lacksquare B is fixed on base and H is moving platform

• maximize f(x)=W over $x=[e \ r \ b]T$ Subject to: $g_1:0\leq \rho_i\leq \sqrt{3}r$ $g_1:b+e=r/2$

 $x_n \leq x \leq x_n$

Simulation by MATLAB™

Design variable	е	r	ь	Objective	Design variable		
<i>x_{lb}</i> [mm]	0	59	35	(Workspace)	e [mm]	r [mm]	b [mm]
x_{ub} [mm]	10	61	45	0.2608	9	59	41

Bounds of the design variables

Schematic Diagram of 3-DOF

Optimization results

Conclusion

- Design and Control of proposed 3-DOF manipulator
- The manipulator was designed with design optimization
- Inverse kinematics of the mechanism was verified through the closed-loop control
- Workspace verification should be carried out in the future

Experiments

Moving platform Capacitive sensor dSPACE board

Base Actuator Power supply

upply Manipulator

Acknowledgement

◆ This work was supported by the Industrial Strategic technology development program, Development of next generation multi-functional machining systems for eco/bio components

REFERENCES

(1) C. M. Gosselin, S. Lemieux and J.-P. Merlet, 1996, "A new architecture of planar three-degree-of-freedom," Proceeding of Int. Conference on Robotics and Automation, Vol.4, pp. 3738~3743